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Abstract
Space-filling designs are crucial for computer experiments. The quality of a space-
filling design can be appropriately reflected by its stratification properties. In a recent
paper, Tian and Xu (Biometrika 109(2):489–501, 2022) introduced the concept of
a space-filling pattern to properly characterize a design’s stratification properties on
various grids. In this study, we generalize the space-filling pattern using arbitrary
orthonormal contrasts. We also propose a new pattern called the two-dimensional
projection pattern to capture the stratification properties of balanced designs in two
dimensionsmore comprehensively.Wederive some theoretical results for both patterns
and show that they are easier to compute and apply to a wider range of designs. We
further show the use of the two patterns in constructing space-filling designs based on
existing strong orthogonal arrays.

Keywords Computer experiment · Stratification property · Strong orthogonal array ·
Space-filling design

1 Introduction

Computer experiments are widely used in scientific research and product develop-
ment. It is widely accepted that space-filling designs, which can fill the experimental
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region evenly, are appropriate choices for computer experiments (Santner et al. 2018).
Among the methods available for constructing space-filling designs, the one based on
orthogonal arrays is particularly attractive because it produces designs that enjoy some
guaranteed space-filling properties in low-dimensional projections (Mckay et al. 1979;
Owen 1992; Tang 1993). Strong orthogonal arrays proposed by He and Tang (2012)
are a watershed moment in this line of research. The idea behind strong orthogonal
arrays inspired researchers to study a design’s space-filling properties by its stratifica-
tions in low-dimensional projections. Recent years have witnessed a growing amount
of interest in this topic. Most of the studies focused on the construction and selection
of strong orthogonal arrays; see He and Tang (2014), Liu and Liu (2015), He et al.
(2018), Zhou and Tang (2019), Shi and Tang (2019, 2020), Cheng et al. (2020) among
others.

It is crucial to have a good criterion for evaluating and ranking various strong
orthogonal arrays and other space-filling designs with similar structures. Tian and Xu
(2022) introduced the concept of a space-filling pattern, which accurately describes
the stratification properties of designs on various grids. Based on the space-filling
pattern, they proposed a minimum aberration type criterion for evaluating the space-
filling properties of designs. This new criterion allows any two designs to be compared
according to their space-filling pattern. However, their space-filling pattern is defined
through complex contrasts, and the calculation is cumbersome, especially for designs
with large run size or number of factors. Moreover, the space-filling pattern and its
related minimum aberration type criterion are not adequate for capturing and ranking
strong orthogonal arrays of strength 2+ proposed by He et al. (2018).

In this paper, we propose a new definition of the space-filling pattern that is equiv-
alent to Tian and Xu (2022)’s but avoids computing with complex numbers. The
new definition is based on general orthonormal contrasts. It is more flexible and
general, applicable to a wider class of designs, and covers the original definition
as a special case. We also introduce a variant of the space-filling pattern, which
we call the two-dimensional projection pattern, to characterize the two-dimensional
projection properties of balanced designs with α× s levels more elaborately. The two-
dimensional projection pattern is easy to compute and can be used to compare large
designs effectively. We derive some theoretical properties of the space-filling pattern
and the two-dimensional projection pattern. Furthermore, we demonstrate two of their
applications. First, we use the two patterns to generate some column-expanded designs
based on existing strong orthogonal arrays. These designs can accommodate more fac-
tors than the original strong orthogonal arrays and perform well under the minimum
aberration type criterion based on the space-filling pattern or the two-dimensional
projection pattern. Second, we use the space-filling pattern as a criterion to rank and
select subarrays from some existing strong orthogonal arrays.

The remainder of this paper is organized as follows. Section2 presents some
basic notation and background. Section3 introduces a new definition of the space-
filling pattern based on general orthonormal contrasts, as well as the concept of a
two-dimensional projection pattern, which better captures the two-dimensional strat-
ification properties of a design. The next two sections are devoted to two applications
of the results in Sect. 3. Based on existing strong orthogonal arrays, Sect. 4 constructs
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optimal column-expanded designs, and Sect. 5 selects optimal subarrays. Section6
concludes the paper with a discussion.

2 Notation and background

For an integer s ≥ 2, let Zs = {0, 1, . . . , s −1}. An n×m matrix D with entries from
Zs j = {0, 1, . . . , s j − 1} in the j-th column is said to be an asymmetrical (or mixed-
level) design of n runs,m factors with the j-th factor having s j levels, j = 1, 2, . . . ,m.
We denote such a design as D ∈ D(n, s1 · · · sm), or D ∈ D(s1s2 · · · sm) if we consider
only the levels of the design. When s1 = · · · = sm = s, D ∈ D(n, s1 · · · sm) is said to
be symmetrical and simply denoted by D ∈ D(n, sm). A design D ∈ D(n, s1 · · · sm) is
called an orthogonal array (OA) of strength t if all possible level combinations appear
with the same frequency in any of its n × t submatrices. We use OA(n,m, s1 × · · · ×
sm, t) to denote such an array; for the symmetrical case we simply use the notation
OA(n,m, s, t). In particular, we call D ∈ D(n, s1 · · · sm) a full factorial design or full
design if it is an OA(n,m, s1 × · · · × sm,m), and we call D a balanced design if it
is an OA(n,m, s1 × · · · × sm, 1). We consider only balanced designs in this paper.
Two columns of the same length are called (combinatorially) orthogonal if they form
a two-factor full design.

Tian and Xu (2022) defined the concept of general strong orthogonal arrays
(GSOAs), which covers a broad class of existing space-filling designs. We adopt
this concept to simplify our notation. A design D ∈ D(n, (s p)m) is called a GSOA
of strength t and denoted by GSOA(n,m, s p, t), if any g-column subarray where
1 ≤ g ≤ t can be collapsed into an OA(n, g, su1 × · · · × sug , g) for any positive inte-
gers u1, . . . , ug satisfying u1+· · ·+ug = t and ui ≤ p for i = 1, . . . , g. Throughout,
collapsing s p levels into sui levels is done by �x/s p−ui � for x ∈ Zs p . By definition,
GSOAs of strength t achieve stratification on grids of volume st regardless of how the
design space is divided into st equal-volume grids from projection (Tian andXu 2022).
Specifically, when p = t , i.e., the number of levels equals st , GSOA(n,m, st , t) is
a strong orthogonal array (SOA) of strength t defined in He and Tang (2012) and
is also denoted by SOA(n,m, st , t). When p = 2 and t = 3, GSOA(n,m, s2, 3)
is an SOA of strength 3− defined in Zhou and Tang (2019) and is also denoted by
SOA(n,m, s2, 3−). When p = 1, GSOA(n,m, s1, t) is an ordinary OA(n,m, s, t).

We also study SOAs of strength 2+ proposed by He et al. (2018). A design
D ∈ D(n, (s2)m) is called a strong orthogonal array of strength 2+ and denoted by
SOA(n,m, s2, 2+), if any two columns of D can be collapsed into an OA(n, 2, s2 ×
s, 2) and an OA(n, 2, s × s2, 2). SOAs of strength 2+ are GSOAs of strength 2, but
with better two-dimensional stratification properties. They can achieve stratifications
on s2 × s and s × s2 grids in any two dimensions like GSOAs of strength 3, but they
do not need to achieve stratifications on s × s × s grids in any three dimensions. Such
SOAs are desirable in applications because they are more space-filling than compa-
rable OAs in two-dimensional projections and can accommodate more factors than
SOAs of the same run sizes and higher strength.
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3 Theoretical results for stratification criteria

3.1 Defining the space-filling pattern by using general orthonormal contrasts

Let D ∈ D(n, (s p)m) be a design with s p levels. Tian and Xu introduced a space-
filling pattern in Tian and Xu (2022) to characterize the stratification properties of D
and proposed a minimum aberration type space-filling criterion based on the space-
filling pattern. They used complex contrasts to define their space-filling pattern. In
this subsection, we redefine the space-filling pattern of D using arbitrary orthonormal
contrasts, which avoids complex number calculations. The new definition is more
general and flexible than Tian and Xu (2022)’s and covers it as a special case. It also
has the potential for generalization (e.g., it can be easily extended to designs with other
numbers of levels; see Sect. 3.2).

For a given s, let Cs
0(x),C

s
1(x), . . . ,C

s
s−1(x) be a set of functions on Zs such that

∑

x∈Zs

Cs
u(x)C

s
v(x) =

{
0, if u �= v,

s, if u = v,
(1)

where Cs
v(x) is the complex conjugate of Cs

v(x), and Cs
v(x) = Cs

v(x) for the case of
real contrasts. We call Cs

0(x),C
s
1(x), . . . ,C

s
s−1(x) a set of orthonormal contrasts of

order s. We make the convention Cs
0(x) = 1 for any x ∈ Zs .

For x ∈ Zs p , let fi (x) be the i-th digit of x in the base-s numeral system. Then,
fi (x) = ⌊

x/s p−i
⌋
(mod s) and x = ∑p

i=1 fi (x)s p−i , where �x� denotes the largest
integer not exceeding x . Let

ρ(x) =
{
p + 1 − min {i : fi (x) �= 0, i = 1, . . . , p} , if x �= 0,

0, if x = 0.
(2)

be the weight defined in Tian and Xu (2022). The weight ρ(x) counts the number of
digits needed to express x in the base-s numeral system after ignoring all the leading
zeros. For x, u ∈ Zs p , define character

χu(x) = Cs
f1(u)

(
f p(x)

) × Cs
f2(u)

(
f p−1(x)

) × · · · × Cs
f p(u) ( f1(x)) . (3)

For vectors uuu = (u1, . . . , um), xxx = (x1, . . . , xm) ∈ Z
m
s p , define the character χuuu(xxx) =∏m

i=1 χui (xi ) and the weight ρ(uuu) = ∑m
i=1 ρ(ui ). For a design D ∈ D(n, (s p)m),

let χuuu(D) = ∑
xxx∈D χuuu(xxx), where xxx ∈ D means xxx is a row of D and the summation∑

xxx∈D is over all rows of D. Let τ = smp and uuu1, . . . ,uuuτ denote all possible uuu ∈ Z
m
s p

in Yates order. The vector χ(D) = (χuuu1(D), . . . , χuuuτ (D)) is called the characteristic
of design D.

Definition 1 Let D ∈ D (n, (s p)m). For r = 1, . . . ,mp, let us define

Sr (D) = 1

n2
∑

ρ(uuu)=r

|χuuu(D)|2 = 1

n2
∑

ρ(uuu)=r

χuuu(D)χuuu(D), (4)
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where the summation is over alluuu ∈ Z
m
s p with ρ(uuu) = r andχuuu(D) is the complex con-

jugate of χuuu(D). The vector
(
S1(D), . . . , Smp(D)

)
is called the space-filling pattern

of the design D.

Theorem 1 The space-filling pattern in Definition 1 is independent of the choice of
orthonormal contrasts.

Proof of Theorem 1 For any D ∈ D(n, (s p)m), there exists a unique set of p
designs D1, . . . , Dp ∈ D(n, sm) such that D = ∑p

k=1 s
p−k Dk . Let D∗ =

(d(1)
1 , . . . , d(1)

m , . . . , d(p)
1 , . . . , d(p)

m ), where d(k)
i is the i-th column of Dk for k =

1, . . . , p. Given any orthonormal contrast, we take the space-filling pattern defined
by that contrast in Definition 1. From the definitions of the space-filling pattern
in Definition 1 and the generalized wordlength pattern proposed by Xu and Wu
(2001), each Sr (D), r = 1, . . . ,mp, is a linear combination of the generalized
wordlength pattern of D∗’s subarrays. For example, S2(D) = A2(D1) and S3(D) =
A3(D1) + ∑

1≤i �= j≤m[A3(d
(1)
i , d(2)

i , d(1)
j ) + A2(d

(2)
i , d(1)

j )] + ∑m
i=1 A2(d

(1)
i , d(2)

i ).
Because the generalized wordlength pattern of a design is independent of the choice
of the orthonormal contrast (see, Xu and Wu 2001; Cheng and Ye 2004), so is the
space-filling pattern. 	


Among all designs inD (n, (s p)m), the minimum aberration space-filling criterion
proposed by Tian and Xu (2022) is to select designs that sequentially minimize the
space-filling pattern Sr (D) for r = 1, . . . ,mp.

The character defined in (3) follows the inverse inner product manner used in Tian
and Xu (2022). In this paper, we also consider an alternative definition of weight (2)
for x ∈ Zs p :

ρ′(x) =
{
max{i : fi (x) �= 0, i = 1, . . . , p}, if x �= 0,

0, if x = 0.
(5)

Here, ρ′(x) counts the number of digits needed to express x in the base-s numeral
system after removing all the trailing zeros. For example, for x = 3 ∈ Z23 , f1(x) =
0, f2(x) = f3(x) = 1, ρ(x) = 2 and ρ′(x) = 3. We show that by using the weight
ρ′, we can skip the “inverse inner product” process in Tian and Xu (2022) without
changing the values of the space-filling pattern. Specifically, for x, u ∈ Zs p , when the
weight ρ′(x) in (5) is used, we can define the character as

χ ′
u(x) = Cs

f1(u) ( f1(x)) × Cs
f2(u) ( f2(x)) × · · · × Cs

f p(u)

(
f p(x)

)
. (6)

Correspondingly, for vectors uuu = (u1, . . . , um), xxx = (x1, . . . , xm) ∈ Z
m
s p , we define

character χ ′
uuu(xxx) = ∏m

i=1 χ ′
ui (xi ) and weight ρ′(uuu) = ∑m

i=1 ρ′(ui ).

Proposition 2 Let D ∈ D (n, (s p)m). For r = 1, . . . ,mp, let us define

S′
r (D) = 1

n2
∑

ρ′(uuu)=r

|χ ′
uuu(D)|2 = 1

n2
∑

ρ′(uuu)=r

χ ′
uuu(D)χ ′

uuu(D),
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where the summation is over all uuu ∈ Z
m
s p with ρ′(uuu) = r , ρ′(·) is defined in (5),

χ ′
uuu(D) is the complex conjugate of χ ′

uuu(D), and χ ′
u(·) = ∑

xxx∈D
∏m

i=1 χ ′
ui (xi ). Then,

S′
r (D) = Sr (D), r = 1, . . . ,mp, where Sr (D) is defined in (4).

Proof of Proposition 2 For D ∈ D(n, (s p)m), from the definitions of Sr (D), S′
r (D),

ρ(uuu), ρ′(uuu) and the fact Cs
0(x) = 1, we have

Sr (D) = 1

n2
∑

ρ(uuu)=r

∣∣∣∣∣
∑

xxx∈D

m∏

i=1

Cs
f1(ui )

( f p(xi )) · · ·Cs
f p(ui )

( f1(xi ))

∣∣∣∣∣

2

= 1

n2
∑

ρ(uuu)=r

∣∣∣∣∣
∑

xxx∈D

m∏

i=1

Cs
f1(ui )

( fr (xi )) · · ·Cs
f p(ui )

( f1(xi ))

∣∣∣∣∣

2

,

and

S′
r (D) = 1

n2
∑

ρ′(uuu)=r

∣∣∣∣∣
∑

xxx∈D

m∏

i=1

Cs
f1(ui )

( f1(xi )) · · ·Cs
f p(ui )

( f p(xi ))

∣∣∣∣∣

2

= 1

n2
∑

ρ′(uuu)=r

∣∣∣∣∣
∑

xxx∈D

m∏

i=1

Cs
f1(ui )

( f1(xi )) · · ·Cs
fr (ui )

( fr (xi ))

∣∣∣∣∣

2

.

The sums
∑

ρ(uuu)=r and
∑

ρ′(uuu)=r are taken over {uuu = (u1, . . . , um) ∈ Z
m
s p :∑m

k=1 ρ(ui ) = r} and {uuu = (u1, . . . , um) ∈ Z
m
s p : ∑m

k=1 ρ′(ui ) = r}, respec-
tively. These two sets can be written as {uuu = (u1, . . . , um) ∈ Z

m
s p : ρ(u1) =

r1, . . . , ρ(um) = rm,
∑m

k=1 rk = r} and {uuu = (u1, . . . , um) ∈ Z
m
s p : ρ′(u1) =

r1, . . . , ρ′(um) = rm,
∑m

k=1 rk = r}. For fixed r1, . . . , rm with
∑m

k=1 rk = r , we have
{uk : ρ(uk) = rk} = {uk : f p−rk+1(uk) �= 0, f1(uk) = · · · = f p−rk (uk) = 0} and
{uk : ρ′(uk) = rk} = {uk : frk (uk) �= 0, frk+1(uk) = · · · = f p(uk) = 0}. Thus,
for k = 1, . . . ,m, f p−rk+1(uk) takes 1, . . . , s − 1, and f p−rk+2(uk), . . . , f p(uk)
take 0, 1, . . . , s − 1 when calculating Sr (D). Similarly, frk (uk) takes 1, . . . , s − 1,
and f1(uk), . . . , frk−1(uk) take 0, 1, . . . , s − 1 when calculating S′

r (D). These facts
imply Sr (D) = S′

r (D). 	


Definition 1 and Proposition 2 give two equivalent definitions of the space-filling
pattern. Henceforth, we do not distinguish between Sr (D) and S′

r (D), ρ(·) and ρ′(·),
and χ(·) and χ ′(·), and we use the common notation Sr (D), ρ(·) and χ(·).

Remark 1 Let xxx1, . . . , xxxτ anduuu1, . . . ,uuuτ denote all possible xxx,uuu ∈ Z
m
s p in Yates order,

where τ = smp. Let H = (
χuuu j (xxxi )

)
be the τ × τ matrix of characters evaluated at all

possible points in Z
m
s p .

(i) Both the first row and column of H are vectors of ones. The character matrix H
is symmetrical because χuuu(xxx) = χxxx (uuu).
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(ii) Let P = Cs ⊗ · · · ⊗ Cs︸ ︷︷ ︸
mp

, where ⊗ denotes the Kronecker product and

Cs =

⎛

⎜⎜⎜⎝

Cs
0(0) Cs

1(0) · · · Cs
s−1(0)

Cs
0(1) Cs

1(1) · · · Cs
s−1(1)

...
...

. . .
...

Cs
0(s − 1) Cs

1(s − 1) · · · Cs
s−1(s − 1)

⎞

⎟⎟⎟⎠ .

Then, H = P when the columns and rows of P are properly permutated, and
HH∗ = PP∗ = τ I , where I is the identity matrix of order τ and H∗ is the
conjugate transpose of H .

(iii) If we take

Cs =

⎛

⎜⎜⎜⎝

Cs
0(0) Cs

1(0) · · · Cs
s−1(0)

Cs
0(1) Cs

1(1) · · · Cs
s−1(1)

...
...

. . .
...

Cs
0(s − 1) Cs

1(s − 1) · · · Cs
s−1(s − 1)

⎞

⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎝

1 1 1 · · · 1
1 ω ω2 · · · ω(s−1)

...
...

...
. . .

...

1 ω(s−1) ω2(s−1) · · · ω(s−1)(s−1)

⎞

⎟⎟⎟⎠ , (7)

where ω = e2π i/s is the primitive sth root of unity and i = (−1)1/2, then Definition 1
reduces to the definition of the space-filling pattern in Tian and Xu (2022).

Different orthonormal contrasts {Cs
0(·),Cs

1(·), . . . ,Cs
s−1(·)} generate different

character matrices, but the space-filling pattern of D is always invariant by The-
orem 1. Compared to the original definition of the space-filling pattern based on
complex contrasts by Tian and Xu (2022), the new definition is based on a class of
general orthonormal contrasts and thus is more flexible. In practice, we can choose
some real orthonormal contrasts to facilitate the calculation of the space-filling pattern
in (4). For example, we can use

C3 =
⎛

⎝
C3
0(0) C3

1(0) C3
2(0)

C3
0(1) C3

1(1) C3
2(1)

C3
0(2) C3

1(2) C3
2(2)

⎞

⎠ =
⎛

⎝
1 −√

6/2
√
2/2

1 0 −√
2

1
√
6/2

√
2/2

⎞

⎠ for s = 3 (8)

instead of (7) with ω = e2π i/3 to avoid complex number calculations.
Because the space-filling pattern defined by (4) is the same as Tian and Xu (2022)’s

by Theorem 1, the properties shown in their paper all hold. We rephrase three of them
as a proposition.
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Proposition 3 Let D ∈ D (n, (s p)m), then

(i) the sum of the space-filling pattern has a lower bound

mp∑

r=1

Sr (D) ≥ smp

n
− 1

with the equality holds if and only if D has no replicated points;
(ii) Sr (D) = Ar (D) when p = 1, where (A1(D), . . . , Am(D)) is the generalized

wordlength pattern defined in Xu and Wu (2001);
(iii) D is a GSOA(n,m, s p, t) if and only if Sr (D) = 0 for 1 ≤ r ≤ t .

3.2 A new criterion based on two-dimensional projection pattern

The space-filling pattern defined in Sect. 3.1 reflects the stratification properties of
a design. If the first r entries of the space-filling pattern are zeros, then a design
achieves stratification on any sr grids from projection. However, the space-filling pat-
tern does not capture some specific stratification properties. For instance, for a design
D ∈ D (n, (s p)m), if S3(D) > 0, we cannot tell by the values of S1(D), S2(D), S3(D)

whether D achieves stratification on s2 × s or s × s2 grids in two dimensions. In addi-
tion, the calculation of the space-filling pattern is time-consuming, especially when
mp is large. Because obtaining the space-filling pattern by (1) requires O(nmpsmp)

operations to go over all u ∈ Z
m
s p . However, the comparison of two designs can often

be done by a few leading entries of the space-filling patterns in practice.
Therefore, in this subsection, we propose a new criterion based on a variant of

the space-filling pattern. Both SOAs of strength 3 and strength 2+ have superior two-
dimensional projection stratification properties than comparableOAs.Wehope that the
new criterion will assist in evaluating and ranking designs based on these properties.
Furthermore, improving the three or higher dimensional projections of the design often
comes at the cost of economy.We prefer designs that exhibit superior two-dimensional
projections while accommodating more factors. Thus, the new criterion will focus on
the two-dimensional projection stratification properties of the design.

We define the new criterion for designs in D(n, (αs)m), where α and s are two
positive integers. A design D ∈ D(n, (αs)m) is called an SOA of strength 2+ with
αs levels, denoted by SOAα(n,m, αs, 2+), if any two columns of D can be collapsed
into an OA(n, 2, (αs)× s, 2) and an OA(n, 2, s × (αs), 2). Here, collapsing αs levels
into s levels is done by �x/α� for x ∈ Zαs . In other words, such designs can achieve
stratifications on (αs) × s and s × (αs) grids in any two dimensions. This class of
SOAs was first proposed by He et al. (2018) as a generalization of SOA(n,m, s2, 2+).
An SOA(n,m, s2, 2+) is a special case of an SOAα(n,m, αs, 2+) with α = s. The
following lemma gives a useful characterization for SOAα(n,m, αs, 2+).

Lemma 4 An SOAα(n,m, αs, 2+), say D, exists if and only if there exist A =
(a1, . . . , am) in D(n, sm) and B = (b1, . . . , bm) in D(n, αm) where ai and bi denote
the i-th column of A and B, such that A is an OA(n,m, s, 2) and (ai , bi , a j ) is an

123



Theory and applications of stratification criteria based on…

OA(n, 3, s × α × s, 3) for all 1 ≤ i �= j ≤ m. The three arrays A, B and D are
related through D = αA + B.

For x ∈ Zαs , let g1(x) = �x/α� and g2(x) = x (mod α). We define weight

ρ(x) =
{
max{i : gi (x) �= 0, i = 1, 2}, if x �= 0,

0, if x = 0,
(9)

which is a generalization of theweightρ′(x) for x ∈ Zs p defined in (5). For x, u ∈ Zαs ,
let us define the character χu(x) as

χu(x) = Cs
g1(u)(g1(x))C

α
g2(u)(g2(x)), (10)

where {Cs
0(·), . . . ,Cs

s−1(·)} and {Cα
0 (·), . . . ,Cα

α−1(·)} are the sets of orthogonal con-
trasts of order s and α, respectively. Here, (10) is a generalization of the character
χ ′
u(x) for x ∈ Zs p defined in (6). Correspondingly, for vectors uuu = (u1, . . . , um),

xxx = (x1, . . . , xm) ∈ Z
m
αs , let us define character χuuu(xxx) = ∏m

i=1 χui (xi ), and for
design D ∈ D(n, (αs)m), define χuuu(D) = ∑

xxx∈D χuuu(xxx).
Now, we are ready to define the two-dimensional projection pattern for D ∈

D(n, (αs)m).

Definition 2 Let D ∈ D(n, (αs)m). Let Ua,b = {uuu : uuu ∈ Z
m
αs, ρ(ui ) = a, ρ(u j ) =

b for 1 ≤ i �= j ≤ m, uk = 0 for k �= i, j}, where a, b ∈ {1, 2}, ρ(·) is the weight
defined in (9). Let

S(a,b)(D) = 1

n2
∑

uuu∈Ua,b

|χuuu(D)|2 = 1

n2
∑

uuu∈Ua,b

χuuu(D)χuuu(D), (11)

where the summation is over all uuu ∈ Ua,b, χuuu(D) is the complex conjugate of χuuu(D)

and χ(·) is defined in (10). The vector
(
S(1,1)(D), S(1,2)(D), S(2,2)(D)

)
is called the

two-dimensional projection pattern of the design D.

Example 1 Consider the SOA2(18, 4, 6, 2+) shown in He et al. (2018), the levels 2
and 4 are of weight 1, the levels 1, 3 and 5 are of weight 2. Therefore, U1,1 contains
(2, 2, 0, 0), (2, 4, 0, 0), (4, 4, 0, 0) and 21 other uuu’s with the same entries as these 3
vectors but in different positions. U1,2 contains (2, 1, 0, 0), (2, 3, 0, 0), (2, 5, 0, 0),
(4, 1, 0, 0), (4, 3, 0, 0), (4, 5, 0, 0) and 66 other uuu’s with the same entries as these 6
vectors but in different positions. U2,2 contains (1, 1, 0, 0), (1, 3, 0, 0), (1, 5, 0, 0),
(3, 3, 0, 0), (3, 5, 0, 0), (5, 5, 0, 0) and 48 other uuu’s with the same entries as these 6
vectors but in different positions. Then, by the definitions of given before, we have
S(1,1)(D) = S(1,2)(D) = 0, S(2,2)(D) = 6.

From Definition 2, S(1,1)(D), i.e., the first entry of the two-dimensional projection
pattern, evaluates the stratification properties of D on s×s grids in any two dimensions.
The second entry satisfies S(1,2)(D) = S(2,1)(D). The sum of the first two entries
S(1,1)(D)+S(1,2)(D) evaluates the stratification properties of D on s×(αs) and (αs)×
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s grids in any two dimensions. The sum of all three entries S(1,1)(D) + S(1,2)(D) +
S(2,2)(D) evaluates the stratification properties of D on (αs) × (αs) grids in any two
dimensions.

Obtaining the space-filling pattern in Tian and Xu (2022) requires O(nmpsmp)

operations for designs inD(n, (s p)m). However, for designs inD(n, (αs)m), it is easy
to show that the complexity of computing the two-dimensional projection pattern is
O(nm3(αs)2), which is much smaller than that of the space-filling pattern for large m
(when α = s and p = 2). It is worth noting that some faster methods for computing the
space-filling pattern have been introduced recently by Tian and Xu (2023). Extending
these methods to compute the corresponding two-dimensional projection pattern will
be studied as a future work.

The space-filling hierarchy principle proposed by Tian and Xu (2022) states that
stratifications on larger grids are more likely to be important than stratifications on
smaller grids. Following this principle, we hope that the designs can achieve strat-
ifications on s × s grids first, followed by s × (αs) and αs × s grids, and finally
(αs) × (αs) grids in any two dimensions. Therefore, based on the two-dimensional
projection pattern, following the space-filling hierarchy principle, we can propose a
minimum aberration type space-filling criterion selects designs D ∈ D(n, (αs)m) that
sequentially minimize the entries of

(
S(1,1)(D), S(1,2)(D), S(2,2)(D)

)
. This criterion

can be used for ranking designs in D(n, (αs)m).
The next theorem shows that the two-dimensional projection pattern captures the

strength of an SOAα(n,m, (αs), 2+).

Theorem 5 A balanced design D ∈ D(n, (αs)m) is an SOAα(n,m, (αs), 2+) if and
only if S(1,1)(D) = S(1,2)(D) = 0.

Proof of Theorem 5 Suppose D = (d1, . . . , dm) ∈ D(n, (αs)m) is a balanced design,
where di denotes the i-th column of D. Let A and B be the two matrices obtained
by transferring the levels of D through x �→ g1(x) = �x/α� and x �→ g2(x) = x
(mod α), respectively. It is easy to see that A is a balanced design in D(n, sm), B
is a balanced design in D(n, αm) and D = αA + B. Denote ai and bi as the i-th
columns of A and B, respectively. We further have (ai , bi ) is an OA(n, 2, s × α, 2)
for i = 1, . . . ,m.

By Definition 2, we have

S(1,1)(D) = 1

n2
∑

uuu∈U1,1

∣∣∣∣∣
∑

xxx∈D

m∏

i=1

Cs
g1(ui )

(g1(xi ))

∣∣∣∣∣

2

= 1

n2
∑

1≤i �= j≤m

s−1∑

g1(ui )=1

s−1∑

g1(u j )=1

∣∣∣∣∣
∑

xxx∈D
Cs
g1(ui )

(g1(xi ))C
s
g1(u j )

(g1(x j ))

∣∣∣∣∣

2

.

and

S(1,2)(D) = 1

n2
∑

1≤i �= j≤m

s−1∑

g1(ui )=0
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α−1∑

g2(ui )=1

s−1∑

g1(u j )=1

∣∣∣∣∣
∑

xxx∈D
Cs
g1(ui )

(g1(xi ))C
α
g2(ui )

(g2(xi ))C
s
g1(u j )

(g1(x j ))

∣∣∣∣∣

2

= 1

n2
∑

1≤i �= j≤m

⎛

⎝
α−1∑

g2(ui )=1

s−1∑

g1(u j )=1

∣∣∣∣∣
∑

xxx∈D
Cα
g2(ui )

(g2(xi ))C
s
g1(u j )

(g1(x j ))

∣∣∣∣∣

2

+
s−1∑

g1(ui )=1

α−1∑

g2(ui )=1

s−1∑

g1(u j )=1

∣∣∣∣∣
∑

xxx∈D
Cs
g1(ui )

(g1(xi ))C
α
g2(ui )

(g2(xi ))C
s
g1(u j )

(g1(x j ))

∣∣∣∣∣

2
⎞

⎠ .

The two equations above reveal that S(1,1)(D) is equivalent to A2(A) and
S(1,1)(D)+S(1,2)(D) is equivalent to

∑
1≤i �= j≤m(A3(ai , bi , a j )+A2(bi , a j )). There-

fore, A is an OA(n,m, s, 2) if and only if S(1,1)(D) = 0. For 1 ≤ i �= j ≤ m,
(ai , bi , a j ) is an OA(n,m, s ×α × s, 3) if and only if S(1,1)(D)+ S(1,2)(D) = 0. The
desired conclusion then follows by Lemma 4. 	


In particular, when α = s, the two-dimensional projection pattern captures the
strength of an SOA(n,m, s2, 2+).

Corollary 6 A balanced design D ∈ D(n, (s2)m) is an SOA(n,m, s2, 2+) if and only
if S(1,1)(D) = S(1,2)(D) = 0.

Theorem 5 and Corollary 6 show that any SOAα(n,m, (αs), 2+) or
SOA(n,m, s2, 2+) has S(1,1) = S(1,2) = 0. Therefore, selecting an optimal SOA of
strength 2+under theminimumaberration type criterion basedon the two-dimensional
projection pattern is equivalent to minimizing S(2,2).

Example 2 Consider two SOA(81, 11, 9, 2+)’s, denoted by D1 and D2, respectively.
They are constructed by D1 = 3A1 + B1 and D2 = 3A2 + B2 with

A1 = (e1e
2
2, e1e

2
2e3,

e1e
2
3, e1e

2
2e

2
3, e1e

2
2e3e4, e1e

2
3e4, e1e2e

2
3e4, e1e

2
2e

2
3e4, e2e

2
4, e1e2e

2
4, e2e3e

2
4)

B1 = (e4, e2e
2
3e4, e2e

2
3e

2
4, e1, e1e

2
3e

2
4, e1e

2
4, e1e2e3e4, e1e2e

2
3, e1e2e3, e1e3e

2
4, e2)

and

A2 = (e1e
2
2, e1e

2
3, e1e

2
4, e2e

2
3, e2e

2
4, e3e

2
4, e1e

2
2e3, e1e2e

2
3, e1e

2
2e

2
3, e1e

2
2e4, e1e2e

2
4)

B2 = (e1, e1, e1, e2, e2, e3, e2, e3, e1, e2, e4),

where e1, e2, e3, e4 are four independent columns of length 81 whose entries are taken
from Z3 and ei e2j represents ei + 2e j (mod 3).

Both D1 and D2 achieve stratifications on 3 × 3, 3 × 9 and 9 × 3 grids in any
two dimensions. The two-dimensional projection patterns of D1 and D2 are (0, 0, 8)
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Table 1 Comparison of D1 and D2 under various criteria

S(1,1) S(1,2) S(2,2) φeff CD2(×100) dL1 dL2 ρmax ρave

D1 0 0 8 99.560% 5.483 17 5.745 0 0

D2 0 0 76 95.638% 6.785 14 4.796 0.1 0.024

Table 2 Design D3, an
SOA2(36, 7, 6, 2+) 0 0 0 2 2 2 4 4 4 0 0 0 2 2 2 4 4 4

0 0 2 2 2 4 0 4 4 2 4 4 0 0 4 0 2 2

0 2 0 2 4 2 4 0 4 4 2 4 0 4 0 2 0 2

0 2 4 2 4 0 2 0 4 0 4 2 4 0 2 4 2 0

0 4 4 2 0 0 2 2 4 2 2 0 2 4 4 0 0 4

0 4 2 2 0 4 0 2 4 4 0 2 4 2 0 2 4 0

0 2 4 0 2 4 4 2 0 0 2 4 4 2 0 0 2 4

1 1 1 3 3 3 5 5 5 1 1 1 3 3 3 5 5 5

1 1 3 3 3 5 1 5 5 3 5 5 1 1 5 1 3 3

1 3 1 3 5 3 5 1 5 5 3 5 1 5 1 3 1 3

1 3 5 3 5 1 3 1 5 1 5 3 5 1 3 5 3 1

1 5 5 3 1 1 3 3 5 3 3 1 3 5 5 1 1 5

1 5 3 3 1 5 1 3 5 5 1 3 5 3 1 3 5 1

1 3 5 1 3 5 5 3 1 1 3 5 5 3 1 1 3 5

and (0, 0, 76), respectively, which clearly capture the stratification properties of both
designs. The values of S(2,2)(D1) and S(2,2)(D2) indicate that design D1 is more
space-filling than design D2 in terms of two-dimensional projections.

We also compare the performance of D1 and D2 across other measures, including
the φ-efficiency (φeff ) measure under the uniform projection criterion (Sun et al. 2019;
Wang et al. 2022), the squared centered L2-discrepancy(CD2) measure under the uni-
formity criterion (Fang et al. 2000), the minimum row-pairwise L1 and L2 distances
(dL1 and dL2 ) under the maximin distance criterion (Johnson et al. 1990), and the max-
imum and average column-pairwise sample correlation coefficients (ρmax and ρave)
under the column-orthogonality criterion (Owen 1994). The results are summarized in
Table 1, which clearly shows that D1 is better than D2 under all criteria. This confirms
the effectiveness of the proposed minimum aberration type criterion in evaluating the
space-filling properties of the two SOAs.

Example 3 Consider designs D3 and D4 ∈ D(36, 67) listed in Tables 2 and 3, respec-
tively. Here, D3 and D4 are obtained by level expansion based on an OA(36, 7, 3, 2),
with the difference that D3 is an SOA2(36, 7, 6, 2+), and D4 is obtained by ran-
domly expanding the levels of OA(36, 7, 3, 2) through 0 → {0, 1}, 1 → {2, 3} and
2 → {4, 5}. To save space, both designs are presented in transposed forms, with the
top half of each table display runs 1–18 and bottom half runs 19–36.

Both D3 and D4 achieve stratifications on 3 × 3 grids in any two dimensions.
The design D3 can further achieve stratifications on 3 × 6 and 6 × 3 grids in any
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Table 3 Design
D4 ∈ D(36, 67), a design based
on OA(36, 7, 3, 2)

1 0 0 3 2 2 5 5 4 0 1 1 3 3 2 5 4 4

1 0 3 3 2 5 0 4 5 3 5 4 0 1 5 1 2 2

1 3 0 2 4 3 4 1 5 4 2 5 0 5 1 2 1 3

1 3 4 2 4 0 3 0 5 1 4 2 4 0 3 5 2 0

0 5 4 3 0 1 3 2 5 2 3 0 3 4 5 1 0 5

0 5 2 2 0 4 1 3 5 5 1 3 5 2 1 3 4 0

1 3 4 0 3 4 5 3 0 1 2 5 4 3 0 1 2 4

3 2 3 4 5 4 1 1 0 2 3 2 5 4 5 0 1 0

3 2 4 5 4 0 3 1 0 5 1 0 2 2 1 3 4 4

2 4 3 5 0 4 0 3 1 0 5 0 3 1 2 5 2 4

2 4 1 5 0 2 5 2 1 3 0 5 1 3 5 1 4 3

2 1 1 4 2 2 4 4 0 5 4 3 5 1 0 2 3 1

2 0 4 4 3 0 2 4 0 1 2 5 1 4 3 5 1 3

3 4 1 2 5 0 1 5 2 2 5 0 0 5 2 3 4 1

Table 4 Comparison of D3 and D4 under various criteria

S(1,1) S(1,2) S(2,2) φeff CD2(×100) dL1 dL2 ρmax ρave

D3 0 0 21 96.310% 4.279 7 2.646 0.086 0.086

D4 0 10.333 6.833 91.368% 5.205 2 1.414 0.238 0.068

two dimensions, whereas D4 cannot. The two-dimensional projection patterns of D3
and D4 are (0, 0, 21) and (0, 10.333, 6.833), respectively, which clearly capture the
stratification properties of both designs. By the minimum aberration type criterion,
the design D3 is more space-filling than D4 in two-dimensional projections.

We also compare the performance of D3 and D4 under the criteria in Example 2.
Table 4 shows that D3 is better than D4 under most criteria.

At the end of this subsection, we remark that S(1,1)(D) + S(1,2)(D) + S(2,2)(D) is
equivalent to A2(D) for a balanced design D ∈ D(n, (αs)m), where A2(D) is the 2nd
entry of the generalized wordlength pattern (Xu and Wu 2001), as stated in the next
theorem. Despite this relationship, it is not feasible to simply evaluate the design’s
space-filling property through its A2 value, as shown in Example 3.

Theorem 7 Let D ∈ D(n, (αs)m) be a balanced design, then S(1,1)(D)+ S(1,2)(D)+
S(2,2)(D) = A2(D).

Proof of Theorem 7 Suppose D = (d1, . . . , dm) ∈ D(n, (αs)m) is a balanced design,
and the arrays A = (a1, . . . , am) and B = (b1, . . . , bm) are defined as in the proof
of Theorem 5 such that D = αA + B. Each column of D, say di , can be uniquely
determined by the corresponding columns in A and B, that is, (ai , bi ). For 1 ≤ i �=
j ≤ m, Proposition 2 of Chen and Tang (2022a) shows that
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A2(di , d j ) = A2(ai , a j ) + A2(ai , b j ) + A2(bi , a j ) + A2(ai , bi )

+ A2(a j , b j ) + A2(bi , b j ) + A3(ai , bi , a j ) + A3(ai , a j , b j )

+ A3(ai , bi , b j ) + A3(bi , a j , b j ) + A4(ai , bi , a j , b j ),

where A2(·), A3(·) and A4(·) are the 2nd, 3rd and 4th entries of the generalized
wordlength pattern proposed by Xu and Wu (2001), respectively. By using a proof
similar to those for Theorems 1 and 5, we obtain

S(1,1)(D) =
∑

1≤i< j≤m

A2(ai , a j ),

S(1,2)(D) =
∑

1≤i< j≤m

{A3(ai , bi , a j ) + A3(ai , a j , b j ) + A2(ai , b j ) + A2(bi , a j )},

S(2,2)(D)

=
∑

1≤i< j≤m

{A4(ai , bi , a j , b j ) + A3(ai , bi , b j ) + A3(bi , a j , b j ) + A2(bi , b j )}.

For i = 1, . . . ,m, (ai , bi ) is an OA(n, 2, s × α, 2); thus, A2(ai , bi ) = 0. Therefore,
S(1,1)(D) + S(1,2)(D) + S(2,2)(D) = ∑

1≤i< j≤m A2(di , d j ) = A2(D). 	


4 Application I: constructing optimal column-expanded designs
based on GSOAs

In this section, we apply the results in Sect. 3 to construct designs by adding columns
to some existing GSOAs of strength 3 and SOAs of strength 2+. We call the generated
designs column-expanded designs. These designs can accommodate more factors than
the original GSOAs or SOAs for the same run size. They also perform well under the
space-filling pattern or two-dimensional projection pattern based minimum aberration
type criteria.

We add columns to GSOAs of strength 3 and SOAs of strength 2+. Calculating
the design’s space-filling pattern is often time-consuming, especially when the design
size is large. For the sake of effectiveness, we optimize the first few entries of the
space-filling pattern and the two-dimensional projection pattern for column-expanded
designs. Specifically, we focus on S1, S2, S3 of the space-filling pattern when expand-
ing GSOAs of strength 3 and S(1,1), S(1,2) of the two-dimensional projection pattern
when expanding SOAs of strength 2+.

The following lemma is crucial in this section. The proof is straightforward by
using the definitions of S3 and S(1,2).

Lemma 8 Let A = (a1, . . . , am) and B = (b1, . . . , bm) be two balanced designs in
D(n, sm) satisfying (a j , b j ) is anOA(n, 2, s, 2) for j = 1, . . . ,m, and let a+1 and b+1
be two balanced columns in D(n, s1) satisfying (a+1, b+1) is an OA(n, 2, s, 2). Let
D = (d1, . . . , dm) = s A + B and the column-expanded design D+1 = (D, d+1) =
s A+1 + B+1, where d j = sa j + b j for j = 1, . . . ,m, d+1 = sa+1 + b+1, A+1 =
(A, a+1) and B+1 = (B, b+1). Then
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S3(D+1) − S3(D) = α(A, a+1) + β(A, B, a+1) + γ (A, a+1, b+1),

S(1,2)(D+1) − S(1,2)(D) = β(A, B, a+1) + γ (A, a+1, b+1),

where

α(A, a+1) =
∑

1≤ j< j ′≤m

A3(a j , a j ′ , a+1),

β(A, B, a+1) =
∑

1≤ j≤m

{A3(a j , b j , a+1) + A2(b j , a+1)},

γ (A, a+1, b+1) =
∑

1≤ j≤m

{A3(a j , a+1, b+1) + A2(a j , b+1)}, (12)

S3(·) is defined in (4), S(1,2)(·) is defined in (11), and A2(·), A3(·) are the 2nd and
the 3rd entries of the generalized wordlength pattern proposed by Xu and Wu (2001),
respectively.

4.1 Column-expanded designs based on GSOAs of strength 3

GSOA(n,m, s p, 3)s have good stratification properties in both two and three-
dimensional projections. The column-expanded designs based on them are expected
to keep these projection properties. We expand a class of GSOAs with s = 2 which
achieve the maximum number of columns, whose existence were shown by Zhou and
Tang (2019) and He and Tang (2012).

Lemma 9 For any k ≥ 3,GSOA(2k, 2k−1−1, 22, 3) andSOA(2k, 2k−1−1, 23, 3) can
be constructed by selecting columns in the saturated OA(2k, 2k − 1, 2, 2). Moreover,
their numbers of factors reach the maximum value.

The construction method of GSOA(2k, 2k−1 − 1, 22, 3) given by Zhou and Tang
(2019) follows. For k ≥ 3, we use e1, . . . , ek to denote the k two-level independent
columns and S to denote the saturated regular OA(2k, 2k − 1, 2, 2) consisting of
e1, . . . , ek and all of their possible interaction columns. We select columns from S to
obtain

A =
{
eu11 · · · euk−1

k−1 ek, ui ∈ {0, 1},
k−1∑

i=1

ui > 0

}
,

B =
{
eu11 · · · euk−1

k−1 , ui ∈ {0, 1},
k−1∑

i=1

ui > 0

}
, (13)

where eu11 · · · euk−1
k−1 ek represents u1e1 + · · · + uk−1ek−1 + ek (mod 2). Then, A is an

OA(2k, 2k−1−1, 2, 3) and B is an OA(2k, 2k−1−1, 2, 2). Let a j and b j denote the j-
th column of A and B, respectively, for 1 ≤ j ≤ 2k−1−1, such that a jb j = ek for 1 ≤
j ≤ 2k−1 − 1. Then, D = 2A+ B ∈ D(2k, 42

k−1−1) is a GSOA(2k, 2k−1 − 1, 22, 3).
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Given A and B, we can always find C = (c1, . . . , c2k−1−1) ∈ D(2k, 22
k−1−1), such

that (a j , b j , c j ) is anOA(2k, 3, 2, 3) for 1 ≤ j ≤ 2k−1−1. Then, D = 4A+2B+C ∈
D(2k, 82

k−1−1) is a SOA(2k, 2k−1−1, 23, 3); see He and Tang (2012) for more details.
Because C does not affect the stratification properties of concern (i.e., stratifications
on 2 × 2, 2 × 4 and 4 × 2 grids), below we focus on expanding the columns of
GSOA(2k, 2k−1 − 1, 22, 3) only.

Let A and B be defined in (13), and D = 2A + B. Let Ā denote the complement
of A in S. Since S = A ∪ B ∪ {ek}, we have Ā = B ∪ {ek}. Let us suppose a
column d+1 = 2a+1 + b+1 is added to D to obtain D+1, where a+1, b+1 ∈ S are
the corresponding columns added to A and B, respectively. By Lemma 9, D is a
GSOA(2k, 2k−1 − 1, 22, 3) achieving the maximum number of factors and thus can
no longer accommodate more factors to keep S1(D+1) = S2(D+1) = S3(D+1) = 0.
Our aim is to sequentially minimize S1(D+1), S2(D+1) and S3(D+1). First, it is
possible and easy to have S1(D+1) = S2(D+1) = 0. As Ā is the set of all columns in
S that are orthogonal to each column of A, it is only possible to select a+1 from Ā to
keep S1(D+1) = S2(D+1) = 0. Next, we need to minimize S3(D+1) among a+1 ∈ Ā
and b+1 ∈ S. By Lemma 8, S3(D+1) = S3(D) + α(A, a+1) + β(A, B, a+1) +
γ (A, a+1, b+1), where α, β and γ are defined in (12).

Theorem 10 Let D+1 = (D, d+1) be a column-expanded design by adding d+1 =
2a+1 + b+1 to D, where D = 2A + B is the GSOA(2k, 2k−1 − 1, 22, 3) with A and
B defined in (13), a+1 ∈ Ā = B ∪ {ek} and b+1 ∈ S. We have:

(i) α(A, a+1) = 0, β(A, B, a+1) = 2k−1 − 1 if a+1 = ek;
(ii) α(A, a+1) = 2k−2 − 1, β(A, B, a+1) = 1 if a+1 ∈ B;
(iii) γ (A, a+1, b+1) = 0 if b+1 ∈ Ā \ {a+1, ek} such that a+1b+1 ∈ Ā.

Proof of Theorem 10 (i) For a+1 = ek , we have A3(a j , a j ′ , a+1) = 0 for any
1 ≤ j < j ′ ≤ m because ek cannot be linearly represented by any two
columns of A. Hence, α(A, a+1) = 0. Additionally, A3(a j , b j , a+1) = 1 and
A2(b j , a+1) = 0 for 1 ≤ j ≤ 2k−1 − 1, which implies β(A, B, a+1) =
2k−1 − 1.

(ii) For a+1 ∈ B = Ā \ {ek} and any two columns a j , a j ′ ∈ A, if a+1a j = a j ′ then
A3(a j , a′

j , a+1) = 1; otherwise, A3(a j , a′
j , a+1) = 0. Without loss of gener-

ality, we suppose a+1 = b j∗ , 1 ≤ j∗ ≤ 2k−1 − 1. We have a j∗ ∈ A such that
a+1a j∗ = ek . Each of the remaining 2k−1 − 2 columns of A, say a j , j �= j∗,
there exists exactly a column a j ′ ∈ A, j �= j, j∗ such that A3(a j , a′

j , a+1) = 1.

Thus, there are (2k−1 − 2)/2 pairs of a j , a j ′ such that A3(a j , a′
j , a+1) = 1

and α(A, a+1) = 2k−2 − 1. Additionally, we have A2(b j∗ , a+1) = 1,
A3(a j∗ , b j∗ , a+1) = 0, and A3(a j , b j , a+1) = A2(b j , a+1) = 0 for all j �= j∗,
leading to β(A, B, a+1) = 1.

(iii) The column b+1 ∈ Ā \ {a+1} is orthogonal to each column of A, which
ensures A2(a j , b+1) = 0 for 1 ≤ j ≤ 2k−1 − 1. That a+1b+1 ∈ Ā ensures
A3(a j , a+1, b+1) = 0 for 1 ≤ j ≤ 2k−1 − 1. Thus, γ (A, a+1, b+1) = 0.
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Theorem 10 shows that the optimal column-expanded design can be obtained by
choosing any a+1 ∈ B and b+1 ∈ Ā\{a+1} such that a+1b+1 ∈ Ā. We denote the
corresponding designs as D+1 = (D, d+1), A+1 = (A, a+1) and B+1 = (B, b+1).
The design D+1 has the smallest S3(D+1) value 2k−2.

More columns can be added to D sequentially by using a similar strategy as
Theorem 10. We illustrate how to optimally add a column to the above D+1. The
following proposition shows that the best choice of the added columns a+2, b+2 and
d+2 = sa+2 + b+2.

Proposition 11 Suppose a column a+2 ∈ Ā\{a+1, b+1, a+1b+1, ek} is added to A+1;
then, we have α(A+1, a+2) = 2k−2 − 1, β(A+1, B+1, a+2) = 1. Given a+2, we
suppose a column b+2 ∈ Ā \ {a+1, ek} is added to B+1 such that a+2b+2 ∈ Ā\{a+1};
then, we have γ (A+1, a+2, b+2) = 0.

Proof of Proposition 11 If a+2 is added to A+1, the increment α is formed by∑
j A3(a j , a+1, a+2) and

∑
j �= j ′ A3(a j , a j ′ , a+2). The former must be zero, because

the columns of A cannot be linearly represented by a+1 and a+2. The latter has
been shown in Theorem 10. The increment β is formed by

∑
j [A3(a j , b j , a+2) +

A2(b j , a+2)], A3(a+1, b+1, a+2)+ A2(b+1, a+2). The former has also been shown in
theorem 10. The latter must be zero, because a+2 ∈ Ā \ {a+1, b+1, a+1b+1, ek}.

Now,weconsiderb+2. The columnb+2 ∈ Ā\{a+1, ek} is orthogonal to each column
of A+1, which ensures A2(a j , b+1) = 0 for 1 ≤ j ≤ 2k−1 − 1 and A2(a+1, b+1) =
0. That a+2b+2 ∈ Ā ensures A3(a j , a+2, b+2) = 0 for 1 ≤ j ≤ 2k−1 − 1 and
A3(a+1, a+2, b+2) = 0. Thus, γ (A+1, a+2, b+2) = 0. 	

Example 4 Let s = 2, k = 4 and e1, . . . , e4 be 4 independent columns of length 16.
The 16 × 7 arrays,

A = (e1e4, e2e4, e3e4, e1e2e4, e1e3e4, e2e3e4, e1e2e3e4),

B = (e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3),

can be utilized to construct anGSOA(16, 7, 4, 3) by D = 2A+B.We haveα(A, e4) =
0 and β(A, B, e4) = 7 if a+1 = e4. According to Theorem 10, a better choice is
a+1 = e1; then, we have α(A, e1) = 3 and β(A, B, e1) = 1, and the same values
of α and β can be obtained by taking a+1 = e2, e3, e1e2, e1e3, e2e3 or e1e2e3. With
a+1 = e1, if b+1 = e2, then we have γ (A, e1, e2) = 0. The b+1 could also take the
other columns in Ā \ {e1, e4}. The minimum S3(D+1), which equals 4, is obtained
when a+1 = e1 and b+1 = e2. Furthermore, by Proposition 11, if we take a+2 = e3
and b+2 = e1e2, then S3(D+2) = 8, and this is the minimum value of S3(D+2).

If we want to add 3 or more columns to the GSOA(2k, 2k−1−1, 22, 3) above, there
is a simple way for k ≥ 4. First, construct a GSOA(2k, 2k−2−1, 22, 3) D′ = 2A′ +B ′
with

A′ =
{
eu11 · · · euk−2

k−2 ek−1, ui ∈ {0, 1},
k−2∑

i=1

ui > 0

}
,
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B ′ =
{
eu11 · · · euk−2

k−2 , ui ∈ {0, 1},
k−2∑

i=1

ui > 0

}
,

where e1, . . . , ek−1 denote the k − 1 two-level independent columns of length 2k .
Then take any m′-column subdesign from D′ with 3 ≤ m′ ≤ 2k−2 − 1 and add it to
D to obtain D+m′ . According to Theorem 10 and Proposition 11, the increment of S3
is at least 2k−2 when adding any column. This minimum increment can be achieved
by adding any column of D′ to D, and D′ itself will not cause an increase in S3, so
the D+m′ will have the smallest S3 value of all the column-expanded designs based
on D. Specifically, we have S1(D+m′) = S2(D+m′) = 0 and S3(D+m′) = m′2k−2.

4.2 Column-expanded designs based on SOAs of strength 2+

SOAs of strength 2+ have good two-dimensional stratification properties and eco-
nomical run sizes. It was shown in He et al. (2018) that an SOA(n,m, s2, 2+) D
exists if and only if there exist an OA(n,m, s, 2) A and an OA(n,m, s, 1) B such
that (ai , a j , bi ) is an OA(n,m, s, 3) for any i �= j . In particular, the three designs are
linked through D = s A + B.

In this subsection, we study column-expanded designs based on SOAs of strength
2+ constructed from regular designs. Suppose s ≥ 2 is a prime power. For k ≥ 3,
let e1, . . . , ek denote the k independent columns of s levels, with entries from the
Galois field GF(s) = {w0 = 0, w1 = 1, w2, . . . , ws−1}. Let S denote the saturated
regular OA(sk, (sk −1)/(s−1), s, 2) consisting of e1, . . . , ek and all of their possible
interaction columns. A method of constructing SOA(sk,m, s2, 2+) is as follows: first
select columns of an OA(sk,m, s, 2) A and an OA(sk,m, s, 1) B from S, such that
the condition (ai , a j , bi ) is an OA(sk,m, s, 3) for any i �= j is satisfied, then we
obtain D = s A + B. Before applying s A + B, one should convert the symbols of
GF(s) = {w0 = 0, w1 = 1, w2, . . . , ws−1} to {0, 1, . . . , s−1} since the columns of A
and B are selected from S and have entries fromGF(s). No conversion is necessary if s
is a prime. Several such types of constructionmethods are given inHe et al. (2018). For
example, Theorem 4 of He et al. (2018) shows that for any k ≥ 3 and any prime power
s ≥ 3, an SOA(sk,m, s2, 2+) where m = (sk − 1)/(s − 1) − ((s − 1)k − 1)/(s − 2)
can be constructed.

As SOAs of strength 2+ focus on two-dimensional stratification properties,
the two-dimensional projection pattern is suitable for evaluating the corresponding
column-expanded designs. Given an SOA(sk,m, s2, 2+) D = s A + B constructed
via saturated regular design S, we have S(1,1)(D) = S(1,2)(D) = 0 by Corol-
lary 6, where S(1,1) and S(1,2) are defined in (11). Let Ā denote the complement
of A in S. Let us suppose a column d+1 = sa+1 + b+1 is added to D to obtain
D+1, where a+1, b+1 ∈ S are the corresponding columns added to A and B, respec-
tively. The criterion we use is to sequentially minimize S(1,1)(D+1) and S(1,2)(D+1).
It is easy to have S(1,1)(D+1) = 0 by selecting any column in Ā as a+1. It
remains to minimize S(1,2)(D+1) among a+1 ∈ Ā and b+1 ∈ S. By Lemma 8,
S(1,2)(D+1)−S(1,2)(D) = β(A, B, a+1)+γ (A, a+1, b+1), whereβ and γ are defined
in (12). Theorem 10 shows how to choose a+1 and b+1.
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Theorem 12 Let D+1 = (D, d+1) be a column-expanded design by adding d+1 =
2a+1 + b+1 to D, where D = s A + B is an SOA(sk,m, s2, 2+) with A and B’s
columns selected from S, a+1 ∈ Ā and b+1 ∈ S. Then, S(1,2)(D+1) is minimized if
a+1 has the minimum frequency in

{
(b1, a1b1, b2, a2b2, . . . , bm , ambm), when s = 2,

(b1, a1b1, . . . , a1b
s−1
1 , b2, a2b2, . . . , a2b

s−1
2 , . . . , bm , ambm , . . . , amb

s−1
m ), when s ≥ 3,

and b+1 ∈ Ā \ {a+1} such that a+1b+1 ∈ Ā. Here, ai b
j
i represents ai + w j bi with

calculations in GF(s) for s ≥ 3.

Proof of Theorem 12 For j = 1, . . . ,m, we have A2(b j , a+1) = s − 1 if a+1 = bi
or A2(a j , b j , a+1) = s − 1 if a+1 is a linear combination of a j and b j . Thus,
the values of β(A, B, a+1) are equal to 1(= s − 1) times the frequency of a+1
in (b1, a1b1, . . . , bm, ambm) for s = 2 and s − 1 times the frequency of a+1 in
(b1, a1b1, . . . , a1b

s−1
1 , . . . , bm, ambm, . . . , ambs−1

m ) for s ≥ 3. Since b+1 is selected
from Ā\{a+1}, we have A2(A, b+1) = 0. Furthermore, the restriction a+1b+1 ∈ Ā
ensures A3(a j , a+1, b+1) = 0 for j = 1, . . . ,m. 	


In addition, if the frequency of a+1 in (b1, a1b1, . . . , bm, ambm) is exactly 1 for
s = 2, then the number of (d j , du) of D+1 that achieves stratifications on 2 × 4 grids
is the maximum value M given in Proposition 2 of Shi and Tang (2019). Here is an
example illustrating Theorem 12.

Example 5 Let s = 2, k = 5 and e1, . . . , e5 be 5 independent columns of length 32.
Let us take

P = {e1, e2, e3, e1e2, e1e3, e2e3, e1e2e3},
Q = {e4, e5, e4e5}

and C = P ∪ Q. We obtain A = (a1, . . . , a21) and B = (b1, . . . , b21) as

A = S \ C = (e1e4, e1e5, e2e4, e2e5, e3e4, e3e5, e1e2e4, e1e2e5, e1e3e4,

e1e3e5, e1e4e5, e2e3e4, e2e3e5, e2e4e5, e3e4e5, e1e2e3e4, e1e2e3e5,

e1e2e4e5, e1e3e4e5, e2e3e4e5, e1e2e3e4e5),

and

B = (e1, e1, e2, e2, e3, e3, e1e2, e1e2, e1e3, e1e3, e1, e2e3, e2e3,

e2, e3, e1e2e3, e1e2e3, e1e2, e1e3, e2e3, e1e2e3).

Then, by He et al. (2018), D = 2A + B is an SOA(32, 21, 4, 2+).
In (b1, a1b1, . . . , b21, a21b21), each column in P appears 3 times, and each col-

umn in Q appears 7 times. If we choose a+1 ∈ Q, e.g., a+1 = e4, then we have
β(A, B, a+1) = 7. A better choice according to Theorem 12 is a+1 ∈ P , e.g.,
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a+1 = e1, leading to β(A, B, a+1) = 3. Given a+1 = e1, take b+1 = e2, which
satisfies a+1b+1 = e1e2 ∈ Ā. Then, by Theorem 10, γ (A, a+1, b+1) = 0, and
S(1,2)(D+1) = 3 is minimized.

More columns can be added to D sequentially. Let us suppose i − 1 columns have
been added sequentially to D to obtain D+(i−1) = s A+(i−1) + B+(i−1), i ≥ 2. Simply
denote the columns of A+(i−1) and B+(i−1) by a1, . . . , am+i−1 and b1, . . . , bm+i−1,
respectively. We can choose a+i according to the frequencies of the columns of
Ā+(i−1) = S\A+(i−1) in

{
(b1, a1b1, . . . , bm+i−1, am+i−1bm+i−1), when s = 2,

(b1, a1b1, . . . , a1b
s−1
1 , . . . , bm+i−1, am+i−1b

s−1
m+i−1), when s ≥ 3,

and choose b+i ∈ Ā+(i−1) \ {a+i } such that a+i b+i ∈ Ā+(i−1). As an illustra-
tion, for D+1 in Example 5, suppose we want to add another column d+2. We have
Ā+1 = P ∪ Q \ {e1}. The frequencies of e2 and e1e2 in (b1, a1b1, . . . , b22, a22b22)
become 4, while the frequencies of the other columns in Ā+1 remain the same as
in Example 5. Therefore, we can choose a+2 to be any column in P \ {e1, e2}, e.g.,
a+2 = e3. Then, let b+2 = e1 to generate d+2. Thiswill lead toβ(A+1, B+1, a+2) = 3,
γ (A+1, a+2, b+2) = 1, and S(1,2)(D+2) = 7.

5 Application II: selecting optimal subarrays of SOAs

Space-filling patterns and two-dimensional projection patterns are a powerful tool for
evaluating designs according to their stratification properties. In this section, we apply
the minimum aberration type criterion based on the space-filling pattern to rank and
to select subarrays of some existing SOAs of strength 3 and SOAs of strength 2+.

First, we select subarrays of two SOAs of strength 3 according to the space-
filling pattern. He and Tang constructed two nonisomorphic SOA(54, 5, 33, 3)s
in He and Tang (2014) (see their Tables 1 and 2). We denote the two
designs by E (1) and E (2), respectively. By calculating their space-filling pat-
tern, we have (S3(E (1)), S4(E (1)), S5(E (1))) = (0, 55.61, 128.22) and (S3(E (2)),

S4(E (2)), S5(E (2))) = (0, 53.61, 131.28), which implies that E (2) is more space-
filling than E (1).

We select the best 4-column and 3-column subarrays from E (1) and E (2). To do this,
we calculate the (S3, S4, S5) values of all possible 4-column and 3-column subarrays
of the two SOA(54, 5, 33, 3)s, as shown in Table 5 . The optimal space-filling patterns
of the subarrays are shown in bold. The optimal 4-column subarray consists of the
1, 3, 4, 5th columns of E (2), and the optimal 3-column subarray consists of the 1, 3, 4th
columns of E (2). In addition, we see that the subarrays of E (2) are generally better
than those of E (1), in terms of S4. This implies that designs with better space-filling
patterns tend to have more space-filling projections.

Shi and Tang (2020) proposed and constructed SOA(n,m, s3, 3)s with additional
stratification properties of strength-four SOAs. The idea behind their criteria is to
make most part of S4 of the design zero. Here, our strategy is to select subarrays of
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Table 5 Space-filling patterns of
subdesigns of E(1) and E(2) Columns (S3, S4, S5) of

E(1)’s subarrays E(2)’s subarrays

2, 3, 4, 5 0, 27.00, 56.39 0, 26.17, 55.56

1, 3, 4, 5 0, 26.67, 57.72 0, 25.17, 58.78

1, 2, 4, 5 0, 29.17, 56.72 0, 28.89, 56.44

1, 2, 3, 5 0, 29.67, 55.39 0, 28.94, 56.22

1, 2, 3, 4 0, 27.11, 54.33 0, 25.50, 57.67

1, 2, 3 0, 12.17, 18.06 0, 11.44, 18.83

1, 2, 4 0, 10.67, 19.89 0, 9.94, 19.94

1, 2, 5 0, 15.67, 19.83 0, 15.39, 19.94

1, 3, 4 0, 10.39, 19.06 0, 9.61, 20.50

1, 3, 5 0, 10.22, 20.78 0, 9.83, 20.94

1, 4, 5 0, 11.22, 19.44 0, 11.28, 19.72

2, 3, 4 0, 11.22, 18.56 0, 11.11, 18.56

2, 3, 5 0, 10.89, 19.11 0, 10.83, 18.61

2, 4, 5 0, 10.39, 19.61 0, 10.83, 19.06

3, 4, 5 0, 12.56, 19.17 0, 11.22, 18.56

SOA(n,m, s3, 3)s by the minimum aberration type criterion based on the space-filling
pattern, which shares a similar idea with Shi and Tang (2020).

Next,we consider subarrays of SOAs of strength 2+. Shi andTang (2019) addressed
the problem of design selection for some existing SOAs of strength 2+ by examining
their three-dimensional projections, but they focused only on the two-level SOAs. This
task can be better completed by comparing the space-filling pattern of the subarrays,
especially for s �= 2. With a fixed A, as long as B conforms to the conditions required
for construction, all SOAs of strength 2+, D = s A + B, have the same S(1,1), S(1,2)

and S1, S2, S3.
Now, we illustrate some optimal subarrays of three existing SOAs of strength 2+

with s ≥ 3. We still focus on SOAs of strength 2+ constructed from regular designs
and follow the notation in Sect. 4.2. The three SOAs D(1), D(2) and D(3) are listed
below, constructed by the methods in He et al. (2018).

• For s = 3, an SOA(27, 6, 9, 2+) can be constructed by D(1) = 3A(1) + B(1) with

A(1) = {e1e22, e1e23, e2e23, e1e22e3, e1e2e23, e1e22e23},
B(1) = {e1, e1, e2, e2, e3, e1}.

• For s = 4, an SOA(64, 8, 16, 2+) can be constructed by D(2) = 4A(2) + B(2)

with

A(2) = {e1e1+x
3 , e2e

1+x
3 ,

e1e2e
1+x
3 , e1e

x
2e

1+x
3 , e1e

1+x
2 , e1e

1+x
2 e3, e1e

1+x
2 ex3 , e1e

1+x
2 e1+x

3 },
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Table 6 Optimal subarrays of strength 2+ SOAs D(1), D(2), D(3) and D(4)

Original Subarray Columns S(2,2), S3, S4, S5

D(1) 5-column 1,2,3,4,5 20∗, 4∗, 70, 98

D(2) 7-column 1,2,3,4,5,6,7 63∗, 15∗, 378, 1365

6-column 1,3,4,5,6,7 45∗, 6∗, 234, 630

D(3) 9-column 1,2,3,4,5,6,7,8,9 144∗, 48∗, 1264, 8928

8-column 1,2,3,4,5,6,7,8 112∗, 32∗, 828, 5216

7-column 1,2,3,4,5,7,9 84∗, 16∗, 532, 2800

D(4) 11-column 1,2,4,5,6,7,8,9,10,11,12 63.5∗, 27.5, 440.5, 2120

11-column 2,3,4,5,6,7,8,9,10,11,12 74, 23∗, 460, 2123

10-column 1,2,4,5,6,8,9,10,11,12 50∗, 21.5, 310.5, 1382

10-column 2,4,5,6,7,8,9,10,11,12 54, 15∗, 333, 1398

9-column 1,2,4,5,8,9,10,11,12 38.5∗, 17.5, 206.5, 860

9-column 4,5,6,7,8,9,10,11,12 42, 7∗, 246, 864

8-column 1,2,4,5,8,9,10,11 28.5∗, 11, 142.5, 500

8-column 4,5,6,7,8,9,10,11 32, 4∗, 165.5, 505.5

7-column 1,2,4,8,9,10,11 20∗, 8.5, 84.5, 275

7-column 4,5,7,8,9,10,12 22.5, 2.5∗, 100.5, 285

6-column 1,4,5,8,9,10 13∗, 3, 53, 144.5

6-column 2,5,7,8,9,11 17, 0.5∗, 63, 134

We mark an S(2,2) entry or an S3 entry with an asterisk if it is optimal

B(2) = {e3, e3, e3, e3, e2, e2, e2, e2e3}.

• For s = 5, an SOA(125, 10, 25, 2+) can be constructed by D(3) = 5A(3) + B(3)

with

A(3) = {e1e42, e1e43, e2e43, e1e2e43, e1e22e43, e1e32e43, e1e42e3, e1e42e23, e1e42e33, e1e42e43},
B(3) = {e2, e3, e3, e3, e3, e3, e2, e2, e2, e2e3}.

We select the 5-column subarray of D(1), the 6 and 7-column subarrays of D(2),
and the 7, 8 and 9-column subarrays of D(3). By comparing the space-filling patterns
and two-projection patterns of all possible subarrays, we obtain the optimal subarrays,
as shown in Table 6.

Recently, Chen and Tang (2022b) found an SOA(54, 12, 9, 2+). Compared with
the existing 54-run SOAs of strength 3, the number of factors it can accommodate is
more than double. We denote SOA(54, 12, 9, 2+) in Chen and Tang (2022b) by D(4).
We obtain the optimal subarrays in the same way as above and list them in Table 6.
Unlike the subarrays of D(1), D(2) and D(3), the optimal subarrays under the two
criteria are usually different.
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6 Discussion

In this study,we propose a newdefinition of the space-filling pattern introduced byTian
and Xu (2022). Our definition is more general and simplifies the computation to some
extent. To account for the importance of the two-dimensional projections of designs
and the computational efficiency, we also introduce the two-dimensional projection
pattern as a variant of the space-filling pattern. This variant has a simpler form and
reveals the stratification properties of the designs on two-dimensional projections for
a broad class of designs.We develop a strategy to augment existing GSOAs of strength
3 and SOAs of strength 2+ with additional columns by using the space-filling pattern
and the two-dimensional projection pattern, and we obtain some column-augmented
designs with desirable space-filling properties. We also use the space-filling pattern
to select optimal subarrays from some SOAs of strength 3 and 2+. Exploring the
relationship between the two-dimensional projection pattern and other criteria based
on the design’s two-dimensional projections, such as the uniform projection criterion
(Sun et al. 2019), is our follow-up goal.
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